Menger curvature and Lipschitz parametrizations in metric spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spaces of Lipschitz Functions on Metric Spaces

In this paper the universal properties of spaces of Lipschitz functions, defined over metric spaces, are investigated.

متن کامل

Fixed Points and Best Approximation in Menger Convex Metric Spaces

Nonexpansive mappings have been studied extensively in recent years by many authors.The first fixed point theorem of a general nature for nonlinear nonexpansive mappings in noncompact setting were proved independently by Browder [8] and Gohde [12]. Later on, Kirk [17] proved the same results under slightly weaker assumptions. A fundamental problem in fixed point theory of nonexpansive mappings ...

متن کامل

A Menger Redux: Embedding Metric Spaces Isometrically in Euclidean Space

We present geometric proofs of Menger’s results on isometrically embedding metric spaces in Euclidean space. In 1928, Karl Menger [6] published the proof of a beautiful characterization of those metric spaces that are isometrically embeddable in the ndimensional Euclidean space E. While a visitor at Harvard University and the Rice Institute in Houston during the 1930-31 academic year, Menger ga...

متن کامل

A Contraction Theorem in Menger Probabilistic Metric Spaces

In this paper, we consider complete menger probabilistic quasimetric space and prove a common fixed point theorem for commuting maps in this space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 2005

ISSN: 0016-2736,1730-6329

DOI: 10.4064/fm185-2-3